(Not know the Khan Academy? Not heard all the chatter about it? Try here.)

What you have here is typical of the sort of thing you find in the current crop of texts. What's called a proof is not really a proof at all. Lots is loaded in that is unproven. What's worse, it's not even noted that there are gaps in the proof. What's a perceptive student to think? That she's stupid because things that the speaker seems just to assume aren't obvious to her? Don't call something a proof if it's not. You do students a disservice.

Here are my objections in detail. Read them after you've watched the video.

1. It's never explained why the medians are concurrent, that is why they all come together at a common point. It will seem utterly mysterious to students why this is so. The concurrency proofs are some of the most beautiful in elementary Euclidean geometry. Why pass over them? Why not even mention that a proof is necessary? Inexcusable.

2. It's never explained why the coordinates of the centroid will be (a/3, b/3, c/3). Instead it's just assumed. This makes the "proof" circular. When one assumes these coordinates, one has in effect assumed that the centroid lies 2/3rds of the way from vertex to midpoint of opposite side.

3. It's never explained why the centroid represents the center of gravity of a physical triangle. This isn't really very hard. It begins with the claim that a median divides a triangle into subregions of equal area. Why isn't this done? Time? Ignorance? No matter the reason, again it seems inexcusable to me.

I expect that students (the perceptive ones, anyway) will come away with the impression to do mathematics, one must have little mathematical nuggets must rain down from heaven, unmotivated and unexplained. What a terrible impression.

## No comments :

## Post a Comment